- Step 3: Measure the length of side AC and mark its midpoint to obtain point E. Step 4: Draw a line segment from vertex B to point E. Step 5: Mark the point of intersection of segments AB and AC. The segments AB and AC are the medians
**of the triangle**. This means that the point of intersection is the**centroid of the triangle**. - Definitions Related to
**Co-Ordinate Geometry**. ⋄**Centroid**: The point of concurrency of the medians of a**triangle**is called the**centroid****of the triangle**. The**centroid**of a**triangle**divides each median in the ratio 2 :1.**The coordinates**are**given**by $ \displaystyle ( \frac{x_1 + x_2 + x_3}{3} , \frac{y_1 + y_2 + y_3}{3} ) $ **Given****the coordinates**of the three**vertices**of a**triangle**ABC, the**centroid**O**coordinates**are**given**by where Ax and Ay are the x and y**coordinates**of the point A etc.. Try this Drag any point A,B,C. The**centroid**O**of the triangle**ABC is continuously recalculated using the above formula. You can also drag the origin point at (0,0).- The
**centroid**of a**triangle**formula is applied to**find**the**centroid**of a**triangle**using**the coordinates**of the**vertices**of a**triangle**. The formula for the**centroid**of**the triangle**is as shown: C e n t r o i d = C ( x, y) = ( x 1 + x 2 + x 3) 3, ( y 1 + y 2 + y 3) 3. H e r e, x 1, x 2 a n d x 3 a r e t h e x − c o o r d i n a t e s o f t h e v ...